ON THE RESIDUAL FINITENESS OF GENERALIZED FREE PRODUCTS(1)

BY JOAN LANDMAN DYER

In this paper we shall be concerned with the behavior of residually finite groups under the formation of the generalized free product with one subgroup amalgamated.

A first result in this direction is due to Gruenberg [3], who proved that the free product of residually finite $(R\mathcal{F})$ groups is again $R\mathcal{F}$. Baumslag began the corresponding investigation of the generalized free product (g.f.p.) [1]. He has established, firstly, that the g.f.p. of $R\mathcal{F}$ groups is always $R\mathcal{F}$ under the proviso that the amalgamated subgroup be finite (\mathcal{F}) , or, in the notation of that paper:

THEOREM 1 (BAUMSLAG [1]). $\sigma(A, B; \mathcal{F}) \subseteq R\mathcal{F}$ for $A, B \in R\mathcal{F}$ [$\sigma(A, B)$ denoting the set of all g.f.p. of A and B with one amalgamated subgroup, and $\sigma(A, B; \Gamma)$ that subset of $\sigma(A, B)$ in which the amalgamated subgroup satisfies the condition Γ].

At this point we impose the fairly reasonable condition that all groups involved be finitely generated (f.g.). For f.g. abelian groups (\mathscr{A}), the g.f.p. is again always $R\mathscr{F}$ [1]. Moving slowly from the abelian situation, "nice" behavior is no longer the rule, even for groups which are nilpotent of class 2 [1]. Nonetheless, Baumslag does obtain a pleasant description of the structure of $\sigma(A, B)$ for A, B f.g. torsion-free nilpotent, viz.,

THEOREM 2 (BAUMSLAG [1]). If A, B are f.g. torsion-free nilpotent, then

$$\sigma(A, B) \subset \Phi \cdot R\mathscr{F}$$

and $\sigma(A, B)$; closed in A and B) $\subseteq R\mathcal{F}$ (where Φ is the class of free groups).

It seems reasonable to suppose that the same result obtains without the requirement that the groups involved be torsion-free. However, somewhat surprisingly, we shall show that this is not the case.

THEOREM 3. There exist f.g. nilpotent groups A, B for which $\sigma(A, B) \neq \Phi \cdot R \mathcal{F}$. In fact, $A \cong B$, and nilpotent of class 3.

However, we can still obtain a description of the g.f.p. as follows:

THEOREM 4. For A, B f.g. nilpotent,

$$\sigma(A, B) \subset R\mathscr{F} \cdot \Phi \cdot R\mathscr{F}$$

and $\sigma(A, B; closed) \subseteq \mathcal{F} \cdot R\mathcal{F}$.

Received by the editors March 1, 1966 and, in revised form April 3, 1967.

⁽¹⁾ This work was partially supported by the National Science Foundation under contract NSF GP-5303.

It is an open question whether this result can be improved to: $\sigma(A, B) \subseteq R\mathscr{F} \cdot R\mathscr{F}$, as I suspect.

Continuing in this direction, the next reasonable class to consider appears to be the polycyclic groups. However, the results above rely on a description of the manner in which normal subgroups of a f.g. torsion-free nilpotent group intersect an arbitrary subgroup, and no such information about the structure of polycyclic groups is known as yet.

In the course of establishing the fact that $\sigma(A, B) \neq R\mathscr{F}$ for A, B f.g. torsion-free nilpotent and nonabelian, Baumslag shows that $\sigma(A, B)$ contains a group which contains a non-Hopf group, and conjectures that $\sigma(A, B)$ itself always contains a non-Hopf group. We provide additional evidence for this conjecture below; before stating our result, however, some notation is required. Let

$$1 \rightarrow M \rightarrow A \rightarrow A/M \rightarrow 1$$

be an extension of M by A/M. Call A strongly noncentral if there exist $m \in M$, $a \in A$ with $gp\{m, m^a\}$ noncyclic $(m^a = a^{-1}ma)$. Then

THEOREM 5. $\sigma(A, B)$ contains a non-Hopf group whenever A, B are any split, strongly noncentral extensions of f.g. torsion-free abelian groups whose centralizers are of finite index.

For torsion-free nilpotent groups, noncentral extensions are strongly noncentral, as $m^{ra} = m^s$, r, s integral, is possible only if r = s. Thus we have the obvious

COROLLARY 1. $\sigma(A, B)$ contains a non-Hopf group for A, B torsion-free nilpotent and representable as split noncentral extensions of abelian groups whose centralizers are of finite index.

An easy application of the construction of Theorem 5 yields also:

COROLLARY 2. $\sigma(A, B)$ contains a non-Hopf group whenever A, B are split extensions of f.g. torsion-free noncyclic abelian groups of rank 1 as A, B modules respectively.

COROLLARY 3. $\sigma(A, B)$ contains a non-Hopf group whenever A and B have the form $X \in Y$ with X abelian containing an element of infinite order, and Y of order at least 2.

Since Theorem 5 covers groups of abelian-by-finite type, it is pleasantly surprising that

THEOREM 6. $\sigma(A, B) \subseteq R\mathscr{F}$ for $A, B \in \mathscr{F} \cdot \mathscr{A}$ (Recall: \mathscr{A} is the class of f.g. abelian groups).

The proposition which furnishes the key to Theorem 6 may be exploited in several ways:

THEOREM 7. If $A, B \in \mathcal{A} \cdot \mathcal{F}$, then $\sigma(A, B) \subseteq R\mathcal{F}$ if and only if at least one of A, B is not a strongly noncentral extension of a torsion-free \mathcal{A} group.

1968]

THEOREM 8. $\sigma(A, B; cyclic) \subseteq R\mathcal{F}$ for A, B polycyclic-by-finite.

This theorem is best-possible in view of Theorem 7 and Higman's example [4] of a non-Hopf group constructed as a g.f.p. of two f.g. metabelian groups with cyclic amalgamation.

It is with much pleasure that I thank my supervisor, Gilbert Baumslag, for his many suggestions, his kindness and encouragement. I wish also to express my thanks to the referee for many corrections and improvements, most particularly of Theorems 5 and 8.

Proof of Theorem 3. Let p be any prime. Define $A \cong B$ as follows:

$$A = gp\{a_1, a_2, a_3, \alpha, d \mid [a_i, a_j] = 1, a_1^{\alpha} = a_2, a_2^{\alpha} = a_3, a_3^{\alpha} = a_1a_2^{-3}a_3^{3},$$

$$d^{p} = [d, \alpha] = [d, a_i] = 1; i, j = 1, 2, 3\},$$

$$B = gp\{b_1, b_2, b_3, \beta, e \mid [b_i, b_j] = 1, b_1^{\beta} = b_2, b_2^{\beta} = b_3, b_3^{\beta} = b_1b_2^{-3}b_3^{\beta},$$

$$e^{p} = [e, \beta] = [e, b_j] = 1; i, j = 1, 2, 3\}.$$

These groups are isomorphic to the direct product of Z_p with a split extension of a free abelian rank 3 group by an infinite cycle, and are nilpotent of class 3.

Define H < A, K < B as:

$$H = gp\{a_1, a_2^p, a_3, d\}, \qquad K = gp\{b_1^p e, b_2, b_3^p, e\}.$$

Then $H \cong K \cong Z \times Z \times Z \times Z_p$, and we identify them via the isomorphism $\varphi: H \to K$ given by

$$\varphi a_1 = b_1^p e$$
, $\varphi a_2^p = b_2$, $\varphi a_3 = b_3^p$, $\varphi d = e$.

Set $P = \{A * B; H\}$, the g.f.p. of A and B with H (=K) amalgamated. Then we claim that

$$d \in \bigcap \{N: N \triangleleft P, P/N \in \mathscr{F}\}$$

which is therefore not free as d is of finite order. To this end, suppose there does exist $N \triangleleft P$ with $P/N \in \mathscr{F}$ and $d \notin N$. For each $w \in P$, let |w| denote the order of $wN \in P/N$; then $|w| < \infty$ and clearly

$$\forall x \in P, |w^x| = |w|, |w^p| = |w|/(p, |w|).$$

Thus, e.g. $|a_1| = |a_2| = |a_3|$; $|b_1| = |b_2| = |b_3|$.

Now $d \notin N$ so |d| = p. Let $n = |a_1|$; then $n = n_1 p^s$, $(n_1, p) = 1$. Interpret, for $q \in Z$ $[q] = \max\{0, q\}$; then $|a_2^p| = n_1 p^{(s-1)}$ and, using $a_2^p = b_2$ and $|b_1| = |b_2|$, $|b_1^p| = n_1 p^{(s-2)}$.

Now $|b_1^p| = |b_3^p| = |a_3| = |a_1| = n_1 p^s$ and so we must have had s = 0, or, (n, p) = 1. But then $|b_1^p e| = np \neq n = |a_1|$ which is an impossibility. Thus |d| = 1, or, $d \in N$ as claimed.

Proof of Theorem 4. We require the following rather technical

PROPOSITION 1. Let $P = \{A * B; H\}$ and suppose $M \triangleleft A$, $N \triangleleft B$ with $M \cap H = N \cap H$. Then

- (a) $nm_p\{M, N\} \cong \{ \not \times_{\gamma \in \Gamma} G_{\gamma} \mid H_{\gamma \gamma'} \}$, the g.f.p. of the groups G_{γ} , $\gamma \in \Gamma$ with amalgamated subgroups $H_{\gamma \gamma'} = G_{\gamma} \cap G_{\gamma'}$, where G_{γ} is a conjugate in P of M or N and $H_{\gamma \gamma'}$ is a conjugate of a subgroup of $H \cap M = H \cap N$. Furthermore:
- (b) There exists a g.f.p. $\Sigma \in \sigma(M^*, N^*)$, where M^* , N^* are subgroups of the holomorphs of M, N; and a homomorphism $\theta : nm_p\{M, N\} \to \Sigma$ such that, if $\delta : \Sigma \to K$ is any homorphism whose restrictions to the factors M^* , N^* of Σ are injective, then $\delta \circ \theta : nm_p\{M, N\} \to K$ is injective on each factor G_v of $nm_p\{M, N\}$.

Let us withhold the proof of this proposition till Theorem 4 has been established. Let $P = \{A * B; H\} \in \sigma(A, B)$ with A, B f.g. nilpotent. Then

$$\tau H = \tau A \cap H = \tau B \cap H$$

 $(\tau G \text{ denoting the torsion portion of } G)$ and we may apply the proposition above to $nm_p\{\tau A, \tau B\}$. Now A is f.g. nilpotent, so τA is finite and therefore its holomorph is also finite. But then the g.f.p. Σ of the proposition is $R\mathscr{F}$ as Theorem 1 is applicable. Thus we may map Σ onto a finite group G via a homomorphism δ , injective on the factors of Σ . The composed map $\psi: nm_p\{\tau A, \tau B\} \to G$ is therefore injective on the factors of $nm_p\{\tau A, \tau B\}$ and so Ker ψ is free [6]. Thus $nm_p\{\tau A, \tau B\} \in \Phi \cdot \mathscr{F} \subset R\mathscr{F}$.

Now

$$P/nm_p\{\tau A, \tau B\} \cong P^* = \{A/\tau A * B/\tau B; H/\tau H\},$$

but $A/\tau A$, $B/\tau B$ are torsion free and so Theorem 2 yields $P^+ \in \Phi \cdot R\mathcal{F}$; thus $P \in R\mathcal{F} \cdot \Phi \cdot R\mathcal{F}$. If H is closed in A, B then $\tau A = \tau H = \tau B$ so $nm_p\{\tau A, \tau B\} = \tau H \in \mathcal{F}$, while $H/\tau H$ is closed in $A/\tau A$, $B/\tau B$ whence $P^* \in R\mathcal{F}$ (Theorem 2 again), or, $P \in \mathcal{F} \cdot R\mathcal{F}$.

It is perhaps worthwhile to state explicitly the following

COROLLARY. If A, B are f.g. nilpotent,

$$\sigma(A, B; \tau A \cup \tau B \subset H) \subset R\mathscr{F} \cdot R\mathscr{F}.$$

As above,

$$nm_n\{\tau A, \tau B\} = \tau H \in \mathscr{F}$$

so $P \in \mathcal{F} \cdot \Phi \cdot R\mathcal{F}$, and it suffices to show $\mathcal{F} \cdot \Phi \subset R\mathcal{F}$.

To this end, let $G \in \mathcal{F} \cdot \Phi$. Now any extension by a free group splits, so there is a free subgroup $R \leq G$, of finite index in G. Hence R has finitely many distinct conjugates, and so the normal subgroup

$$F = \bigcap_{g \in G} R^g$$

is again of finite index in G. But $F \subseteq R$, so is free; thus $G \in \Phi \cdot \mathscr{F} \subset R\mathscr{F}$.

Proof of Proposition 1. In her paper Generalized free products with amalgamated subgroups, II [7] and as applied to g.f.p.'s with one amalgamated subgroup, Hanna Neumann establishes the fact that every subgroup of a g.f.p. is again a g.f.p.

19681

With $P = \{A * B; H\}$ and $G \le P$, a system of generators for G is constructed recursively: for each ordinal σ , a set $\Phi_{\sigma} = \mathcal{F}_{\sigma} \cup \mathcal{S}_{\sigma}$ is chosen, where the elements of \mathcal{F}_{σ} generate a factor of G which is a subgroup of a conjugate of A or B while the elements of \mathcal{S}_{σ} generate factors of some other type. The amalgamated subgroups are all contained in conjugates of H. To establish (a), we trace Neumann's construction of the Φ_{σ} to ensure firstly that \mathcal{S}_{σ} is empty for all σ , and secondly that the factor generated by the elements of \mathcal{F}_{σ} is a conjugate of M or N. Let

$$G = nm_{v}\{M, N\}; \qquad P = \{A * B; H\}.$$

The Φ_{σ} are selected as follows:

Set $\Phi_0 = G \cap H$. Assume Φ_{σ} , has been chosen for all ordinals $\sigma' < \sigma$ and let

$$K_{\sigma} = gp\{w : w \in \Phi_{\sigma'}, \sigma' < \sigma\}.$$

If $K_{\sigma} \neq G$, define Φ_{σ} as follows: let

$$l = \min\{l(w) : w \in G - K_{\sigma}\}.$$

(where l(w) denotes the length of $w \in P$; cf. [6]). If, among the elements of length l in $G - K_{\sigma}$ there is an element of the form $u^{-1}tu$, $t \in A \cup B$, $u \in P$ (briefly, a transform) and in normal form as written, choose one such element and, with reference to it, set

$$\mathcal{F}_{\sigma} = \{u^{-1}t'u : t', t \text{ in the same factor of } P, u^{-1}t'u \in G\}$$

and

$$\mathcal{S}_{\sigma} = \{ f : f \in G - gp\{K_{\sigma}, \mathcal{F}_{\sigma}\}, l(f) = l, (f^{-1}u^{-1}tu) \leq l \}.$$

If there is no transform of length l in $G - K_{\sigma}$, set $\mathscr{F}_{\sigma} = \varnothing$ and choose any $f \in G - K_{\sigma}$ of minimal length l. Then define

$$\mathscr{S}_{\sigma} = \{g : g \in G - K_{\sigma}, l(g) = l, l(g^{-1}f) \leq l\}.$$

In either case, $\Phi_{\sigma} = \mathcal{F}_{\sigma} \cup \mathcal{S}_{\sigma}$. We must show

- (i) $\forall \sigma, \mathcal{S}_{\sigma} = \emptyset$.
- (ii) If $u^{-1}tu \in \mathcal{F}_{\sigma}$, then $gp\{\mathcal{F}_{\sigma}\} = u^{-1}Mu$ or $u^{-1}Nu$ if $t \in A$ or B.

Now (ii) is obvious: $gp\{\mathcal{F}_{\sigma}\}$ is generated by conjugates of elements from A or B—for definiteness assume

$$gp\{\mathcal{F}_a\} \subset u^{-1}Au$$
, some $u \in P$.

We must verify

$$u^{-1}Au\cap G=u^{-1}Mu.$$

But this is equivalent to

$$A \cap G = M$$

while

$$P^* = P/G = \{A/M * B/N; H/H \cap M\}$$

so $A \cap G - M$ is empty, or, $A \cap G \subseteq M$, while apparently $M \subseteq A \cap G$.

To establish (i), we first note that every element of length ≤ 1 in G is a transform (necessarily with u=1), so if $l \leq 1$ then $\mathcal{F}_{\sigma} = A \cap G$ or $B \cap G$. In this case $f \in G$, $1 \geq l(f) = l \geq l(f^{-1}t)$ implies that f is in the same factor of P as t and so $f \in gp\{K_{\sigma}, \mathcal{F}_{\sigma}\}$: thus $\mathcal{S}_{\sigma} = \emptyset$.

Suppose l>1, let $g\in G-K_{\sigma}$, $g=\xi_{1}\xi_{2}\cdots\xi_{l}$ with $\xi_{i}\in(A\cup B)-H$ and ξ_{i} , ξ_{i+1} from different factors of P. In the natural map $P\to P^{*}=P/G$ given by $w\to wG$, we have

$$1 = gG = (\xi_1 G)(\xi_2 G) \cdot \cdot \cdot (\xi_l G)$$

and so $\xi_j \in MH \cup NH$ for some j. By passing to g^{-1} if necessary we may assume $j \ge (l+1)/2$. As $MH \cup NH = (M \cup N)H = H(M \cup N)$, we may multiply ξ_{j-1} or ξ_{j+1} by an element of H (if necessary) to achieve that $\xi_j \in M \cup N \subseteq G$. Put $g = \eta \xi$ with

$$\eta = \xi_1 \cdots (\xi_{i-1}\xi_{i+1}) \cdots \xi_l, \qquad \xi = \xi_j^{\xi_{j+1}\cdots \xi}.$$

As $\xi \in G$, also $\eta \in G$; since $l(\eta) < l$, the minimal choice of l implies that $\eta \in K_{\sigma}$. As $g \notin K_{\sigma}$, it follows that $\xi \notin K_{\sigma}$ and so $l(\xi) = l$: this can only happen if $j = \frac{1}{2}(l+1)$. In this case ξ as written is a transform of length l in $G - K_{\sigma}$, so \mathcal{F}_{σ} is not empty; say $u^{-1}tu \in \mathcal{F}_{\sigma}$, $l(u^{-1}tu) = l$. Now \mathcal{F}_{σ} consists of elements g in $G - gp\{K_{\sigma}, \mathcal{F}_{\sigma}\}$ which satisfy $l(g^{-1}u^{-1}tu) \le l$. This last condition visibly implies that $u = (\xi_1 \cdots \xi_{j-1})^{-1}$ and that ξ_j , t are in the same factor of P: so every g satisfying the last condition is in $gp\{K_{\sigma}, \mathcal{F}_{\sigma}\}$ and therefore \mathcal{F}_{σ} is empty.

To establish (b) of our proposition, recall that the holomorph, Hol(K), of a group K is the set $K \times Aut(K)$ with product

$$(k_1, \alpha_1)(k_2, \alpha_2) = (k_1\alpha_1(k_2), \alpha_2\alpha_1).$$

Identify K with $K \times id$ and Aut (K) with $1 \times Aut$ (K).

Let β_A : $A \to \text{Aut}(M)$, β_B : $B \to \text{Aut}(N)$ be defined by conjugation: $\beta_A(a)(m) = m^a$, $\beta_B(b)(n) = n^b$, for all $a \in A$, $m \in M$, $b \in B$, $n \in N$. Define

$$M^* = gp\{M, \beta_A(A)\} \leq \operatorname{Hol}(M), \qquad N^* = gp\{N, \beta_B(B)\} \leq \operatorname{Hol}(N)$$

and set

$$H^* = \{(h, \beta_A(h')) : h \in H \cap M, h' \in H\}$$

= \{(h, \beta_B(h')) : h \in H \cap N, h' \in H\}.

Then $H^* \subseteq \text{Hol}(H)$, $H^* \subseteq M^*$, N^* and so we may form

$$\Sigma = \{M^* * N^*; H^*\}.$$

Define θ_{γ} : $G_{\gamma} \to \Sigma$ as follows: for $g_{\gamma} \in G_{\gamma}$, $g_{\gamma} = u^{-1}tu$ with $t \in M \cup N$, $u = a_1b_1 \cdots a_kb_k$, $a_i \in A$, $b_j \in B$, set

$$\theta_{\gamma}(g_{\gamma}) = (1, \beta_{B}b_{k}^{-1})(1, \beta_{A}a_{k}^{-1}) \cdots (1, \beta_{A}a_{1}^{-1})(t, 1)(1, \beta_{A}a_{1}) \cdots (1, \beta_{A}a_{k})(1, \beta_{B}b_{k})$$

$$= (1, \beta_{A}a_{1}^{-1} \cdots \beta_{A}a_{k}^{-1}\beta_{B}b_{k}^{-1})(t, 1)(1, \beta_{B}b_{k}\beta_{A}a_{k} \cdots \beta_{A}a_{1}).$$

Now θ_{γ} is well defined: a choice appears in the representation of g_{γ} as the product $u^{-1}tu$ of elements coming alternately from A and B, which are only determined modulo H. However, the amalgamated subgroup H^* was designed so as to void this difficulty. Then $\theta_{\gamma}: G_{\gamma} \to \Sigma$ is clearly monomorphic. It is also clear that

$$\theta_{\gamma}|_{H\gamma\gamma'} = \theta_{\gamma'}|_{H\gamma'\gamma},$$

by choice of H^* . Thus we may extend the θ_{γ} to an epimorphism $\theta : nm_{p}\{M, N\} \to \Sigma$ with $\theta|_{G_{\gamma}} = \theta_{\gamma}$. Since $\theta(G_{\gamma})$ is in a conjugate of M^* or N^* in Σ , any map injective on M^* and N^* is also injective on $\theta(G_{\gamma})$.

Proof of Theorem 5. Let

1968]

$$1 \rightarrow M \rightarrow A \rightarrow S \rightarrow 1$$
, $1 \rightarrow N \rightarrow B \rightarrow T \rightarrow 1$

be split, strongly noncentral with M, N torsion-free f.g. abelian.

View M as a Z-module, and form the Q-module $M^+ = M \otimes_Z Q$. Then $M \cong M \otimes_Z Z < M^+$ and we shall regard $M < M^+$. The action of A on M affords a representation of the finite group $A/\mathscr{Z}_A(M)$ as a group of linear transformations over Z which we view as a representation over Q.

Choose $m \in M$, $a \in A$ so that $gp\{m, m^a\}$ is noncyclic, and let K_1 be the normal closure of m in A. By Maschke's Theorem, $K_1 \otimes_Z Q$ has a complement, say M', in $M \otimes_Z Q$; put $K_2 = M' \cap M$. Then $K_2 \triangleleft A$, $K_1 \cap K_2 = 1$, and $[M:K_1K_2]$ is finite. Choose $n \in N$, $b \in B$ so that $gp\{n, n^b\}$ is noncyclic and construct subgroups L_1, L_2 of N similarly. Let p, q be distinct primes with p congruent to $1 \mod [M:K_1K_2] \times [N:L_1L_2]$. Define $H \leq A$, $J \leq B$ as follows:

$$H = gp\{m, m^a\}, \qquad J = gp\{n^p, n^{bq}\}.$$

Then $H \cong J$ with isomorphism given by

$$m \to n^p$$
, $m^a \to n^{bq}$.

Identify H with J accordingly and form

$$P = \{A * B; H(=J)\}.$$

Then P is the required non-Hopf group: we establish this by exhibiting an epimorphism $\theta: P \to P$ with nontrivial kernel.

To this end, define $\psi: K_1K_2 \to K_1K_2$ by

$$\psi|_{K_1}(k) = k^p, \qquad \psi|_{K_2} = id_{K_2}.$$

We claim ψ has a (unique) extension $\bar{\psi}: M \to M$. Choose a basis x_1, \ldots, x_l for M such that $x_1^{e_1}, \ldots, x_j^{e_l}$ form a basis for K_1 and $x_{j+1}^{e_{j+1}}w_{j+1}, \ldots, x_l^{e_l}w_l$ form a basis for K_2 where $w_i = w_i(x_1, \ldots, x_j)$. For each $i, j+1 \le i \le l$, there exists $v_i = v_i(x_1, \ldots, x_j)$ such that $w_i^{1-p} = v_i^{e_l}$, for $e_i \mid [M:K_1K_2]$ and $p \equiv 1 \mod [M:K_1K_2][N:L_1L_2]$. Define $\psi: M \to M$ by setting

$$\bar{\psi}(x_i) = x_i^p, \quad i = 1, ..., j,$$

$$= x_i v_i, \quad i = j+1, ..., l,$$

and extending linearly. One verifies easily that $\psi|_{K_1K_2} = \psi$. Now $\psi \colon K_1K_2 \to K_1K_2$ is compatible with the action of S as K_1 , K_2 are normal subgroups of A and $(k^a)^p = (k^p)^a$ for all $a \in A$, $k \in K_1$. But this implies that ψ is also S-compatible as $[M \colon K_1K_2] < \infty$ and M is torsion-free. Thus the splitting of the extension A allows us to assert the existence of a homomorphism $\theta_A \colon A \to A$ rendering the diagram

$$\begin{array}{cccc}
1 & \longrightarrow & M & \longrightarrow & A & \longrightarrow & S & \longrightarrow & 1 \\
& & \downarrow \psi & & \downarrow \theta_A & & \downarrow id_S & \\
1 & \longrightarrow & M & \longrightarrow & A & \longrightarrow & S & \longrightarrow & 1
\end{array}$$

commutative. Construct $\theta_B \colon B \to B$ similarly. It is clear that $\theta_A|_H = \theta_B|_H$ and so we may simultaneously extend them to an endomorphism $\theta \colon P \to P$.

Firstly, θ is an epimorphism; we need only verify that M, $N \subset \text{Im } \theta$ as θ acts as the identity elsewhere. Now $m \in \text{Im } \theta$ for $m = n^p = \theta(n)$. Furthermore (p, q) = 1 so there exist u, $v \in Z$ with pu + qv = 1. Thus $n = \theta(n)^u n^{qbvb^{-1}} = \theta(n) m^{avb^{-1}}$ and m, $a \in \text{Im } \theta$ so $n \in \text{Im } \theta$ as well. Thus $K_1 = nm_A\{m\}$, $L_1 = nm_B\{n\} \subset \text{Im } \theta$. But $|\tau(M/K_1)|$, $|\tau(N/L_1)|$ are prime to p, and θ acts as the identity on M/K_1 modulo $\tau(M/K_1)$, N/L_1 modulo $\tau(N/L_1)$.

Let $w = [n, ab^{-1}]^p n^{p-q}$. Then $w \in \text{Ker } \theta$ but $w \neq 1$ since $n, n^{p-q} \in B - H$ and $a \in A - H$.

Proof of Theorem 6. In all of the following, the aim is always to reduce the problem to the case in which the amalgamated subgroup is finite and Baumslag's Theorem 1 is applicable. Formally, the situation we shall obtain is that described by the hypotheses of the following proposition, essentially due to Baumslag [1]:

PROPOSITION 2. Let $P = \{A * B; H\}$ and assume there exist equally-indexed families $\{A_n\}_{n \in \mathbb{Z}^+}$, $\{B_n\}_{n \in \mathbb{Z}^+}$ of nested normal subgroups of A, B (i.e. filtrations of A, B) satisfying

- (i) $\forall n \in \mathbb{Z}^+, H \cap A_n = H \cap B_n$,
- (ii) $\forall n \in \mathbb{Z}^+, H/H \cap A_n \in \mathcal{F}; A/A_n, B/B_n \in \mathcal{RF},$
- (iii) $\bigcap_{n\in\mathbb{Z}^+} A_n = 1 = \bigcap_{n\in\mathbb{Z}^+} B_n$,
- (iv) $\bigcap_{n\in\mathbb{Z}^+} HA_n = H = \bigcap_{n\in\mathbb{Z}^+} HB_n$.

Then $P \in R\mathcal{F}$.

Now (i) establishes the existence of epimorphisms

$$\theta_n: P \to P_n = \{A/A_n * B/B_n; H/H \cap A_n = H/H \cap B_n\}$$

extending the canonical projections $A \to A/A_n$, $B \to B/B_n$ and $P_n \in R\mathscr{F}$ by (ii) and Theorem 1. But any $w \in P$ is a finite product of elements coming alternately from A and B, each of which may be excluded from Ker θ_n for some n by (iii). Moreover, we can ensure that $l_P(w) = l_{P_n}(\theta_n w)$ for n sufficiently large, as the image of any element of A - H or B - H lies in $A/A_n - HA_n/A_n$ or $B/B_n - HB_n/B_n$ for n large enough by (iv). Thus $P \in R(R\mathscr{F}) = R\mathscr{F}$.

1968]

Let $P = \{A * B; H\} \in \sigma(A, B)$ and let $K \triangleleft A$, $L \triangleleft B$ be finite with A/K, B/Ltorsion-free abelian. Now HK, HL \triangleleft A, B respectively. Since HK, HL \in RF there exists an integer r for which

$$(HK)^r \cap K = 1 = (HL)^r \cap L.$$

Since $K \ge [A, A]$, $L \ge [B, B]$; $(HK)^r$, $(HL)^r$ are central. Now $(HK)^r \ge H^r$, $(HL)^r \ge H^r$ hence $H^r \triangleleft A$, B. Thus $\{H^{rqn}\}_{n \in \mathbb{Z}^+}$ forms a filtration of both A and B of the required type: conditions (i), (ii) and (iv) are immediate, while (iii) follows from the fact that no $\neq 1$ element in any f.g. torsion-free abelian group is of infinite height.

Proof of Theorem 7. Suppose that $A \in \mathcal{A} \cdot \mathcal{F}$ is *not* a strongly noncentral extension of a torsion-free abelian group. Then there exists $M \triangleleft A$ with $M \in \mathcal{A}$, $A/M \in \mathcal{F}$ and $gp\{m, m^a\}$ cyclic for every $m \in M$, $a \in A$. We may replace M by $M^{|\tau(M)|}$ to ensure that M is torsion-free. Note that, for $m \in M$ and root-free, $m^a = m^{\pm 1}$; so this is the case for any element of a basis for M.

Now for any subgroup N of M there is a basis m_1, \ldots, m_K of M so that N has basis $m_1^{\epsilon_1}, \ldots, m_K^{\epsilon_K}, \epsilon_i \ge 0$ and integral. Since the m_i are root free, for all $a \in A$ we have

$$(m_i^{\varepsilon_i})^a = m_i^{\pm \varepsilon_i},$$

thus $N^a = N$ as N is a subgroup; i.e. any subgroup of M is normal in A.

Now let $A, B \in \mathcal{A} \cdot \mathcal{F}$ and $H \leq B, A$ with A not strongly noncentral. Let $N \triangleleft B$ with $N \in \mathcal{A}$, $B/N \in \mathcal{F}$. There exists an integer r for which $A^r \leq M$, $B^r \leq N$ and A^r , B^r are torsion-free. Let $t = |\tau(B^r/H^r)|$, and, for any integer s > 1 define, for each $n \in \mathbb{Z}^+$

$$B_n = B^{rts^n}, \qquad A_n = H \cap B_n.$$

Then $B^{rt} \cap H \leq H^r$ by choice of t, for

$$H \cap B^{rt} \leq H^r \cap B^r \leq H^r$$
.

Hence $A_n \le H^r \le A^r \le M$, by choice of r; so $A_n \triangleleft A$. Now observe that

$$\bigcap_{n\in\mathbb{Z}^+}B_n=1=\bigcap_{n\in\mathbb{Z}^+}A_n,\quad H\cap A_n=H\cap B_n,\quad H/H\cap B_n\in\mathscr{F}.$$

Furthermore $\mathscr{A} \cdot \mathscr{F} \subseteq R\mathscr{F}$ and the class of $\mathscr{A} \cdot \mathscr{F}$ groups is image-closed, so

$$A/A_n$$
, $B/B_n \in R\mathscr{F}$.

Since $A_n \leq H$, apparently

$$\bigcap_{n\in\mathbb{Z}^+} HA_n = H$$

and we may apply Proposition 2 once we verify

$$\bigcap_{n\in\mathbb{Z}^+}HB_n=H;$$

we must show $\bigcap_{n\in\mathbb{Z}^+} HB_n \leq H$ for the reverse inclusion is automatic. Now $H \cap B^{rt}$

is a direct factor of B^{rt} as $B^{rt}/H \cap B^{rt}$ is torsion-free (our selection of t) and B^{rt} is a torsion-free $\mathscr A$ group. Thus $H \cap B^{rt}$ is complemented by a subgroup $K \le B^{rt}$:

$$B^{rt} = (H \cap B^{rt})K; \qquad K \cap H \cap B^{rt} = 1$$

whence, for all $n \in Z^+$, $HB^{rts^n} = HK^{s^n}$ and $K \cap H = 1$ as $K \subseteq B^{rt}$. Suppose $b \in \bigcap_{n \in Z^+} HB_n$; i.e. $b \in HK^{s^n}$ for all $N \in Z^+$. Thus

$$b = h_n k_n^{s^n}, \quad h_n \in H, k_n \in K.$$

But $K \cap H = 1$ so $h_1 = h_n$ for all n, whence

$$h_1^{-1}b = k_n^{s^n} \in K^{s^n}.$$

Since K is f.g. torsion-free abelian, $\bigcap_{n \in Z^+} K^{s^n} = 1$ or $b = h_1 \in H$ as required.

To prove the remaining part of Theorem 7, let $A \in \mathscr{A} \cdot \mathscr{F}$ be a strongly noncentral extension of a torsion-free \mathscr{A} -group. Thus there exists $m \in A$ whose normal closure is a torsion-free \mathscr{A} -group of rank at least two. Choose $a \in A$ such that $gp\{m, m^a\}$ is noncyclic. There is a least integer K > 0 with $[a^K, m] = 1$. Set $C = gp\{a, m\} \le A$. For $B \in \mathscr{A} \cdot \mathscr{F}$ any other strongly noncentral extension of a torsion-free \mathscr{A} group, form $D = gp\{b, n\}$ similarly. To show $\sigma(C, D) \not\subset R\mathscr{F}$ is sufficient as every element of $\sigma(C, D)$ is a subgroup of some element of $\sigma(A, B)$. In fact, $\sigma(C, D)$ contains a non-Hopf group, and this is the content of the following proposition.

Proposition 3. Let $C, D \in \mathcal{A} \cdot \mathcal{F}$, with

$$1 \rightarrow M \rightarrow C \rightarrow S \rightarrow 1$$
, $1 \rightarrow N \rightarrow D \rightarrow T \rightarrow 1$

such that M, N are noncyclic torsion-free \mathcal{A} -groups, S, T are cyclic, M and N are one generator S and T modules respectively and $[S^K, M] = [T^L, N] = 1$ for some positive integers K, L. Then $\sigma(C, D)$ contains a non-Hopf group.

Let $m \in M$, $n \in N$ be elements whose normal closures in C, D generate M, N. Choose $c \in C$, $d \in D$ such that cM, dN generate S, T (regarding S = C/M, T = D/N). Assuming K, L integers such that $[S^K, M] = [T^L, N] = 1$, $c^K \in M$ or $gp\{c\} \cap M = 1$ and $d^L \in N$ or $gp\{d\} \cap N = 1$, choose p to be any prime of the form

$$1+KLr$$
, $r \in \mathbb{Z}^+$.

(As is well known, there are infinitely many such for the numbers 1 + KLn, $n \in \mathbb{Z}^+$ form an arithmetic sequence with (1, KL) = 1.) Let q > 1 be any number prime to p. Then

$$H = \{m, m^c\}, \qquad H^{\times} = \{n^p, n^{qd}\}$$

are free abelian of rank 2 and may be identified via the isomorphism $\varphi: H \to H^{\times}$ given by

$$\varphi m = n^p \qquad \varphi m^c = n^{qd}.$$

Set $P = \{C * D; H(=H^*)\} \in \sigma(C, D)$ and we claim P is non-Hopf; this is established, as before, by exhibiting an ependomorphism of P with nontrivial

kernel: Suppose $c^K \in M$. Then each element of C may be written in the form

$$c^{\varepsilon}\mu$$
, $0 \leq \varepsilon < K$, $\mu \in M$.

Define $\theta: C \to C$ by

$$\theta(c^{\varepsilon}\mu) = c^{p\varepsilon}\mu^{p}.$$

If $c^K \notin M$, $gp\{c\} \cap M = 1$ and every element of C may be written uniquely in the form

$$c^{\varepsilon}\mu$$
, $\varepsilon \in \mathbb{Z}^+$, $\mu \in M$.

Then define

$$\theta(c^{\varepsilon}\mu) = c^{\varepsilon}\mu^{p}.$$

In either case θ is a well-defined homomorphism.

With $\rho: D \to D$ defined similarly, it is clear that ρ and θ agree on H and so may simultaneously be extended to an endomorphism $\psi: P \to P$. Now (p, K) = 1 so $\mu \in M \cap \text{Im } \psi$. But therefore $M \subset \text{Im } \psi$ as $m = \psi(n)$ while $M = gp\{m^{c^c} : \varepsilon \in Z^+\}$. Furthermore

$$c = c^p c^{-KLr}$$

so in the situation $c^{\kappa} \in M$, we have $\psi(c) = c^{p}$ whence $c \in \text{Im } \psi$; while if $c^{\kappa} \notin M$ then $c = \psi(c)$, therefore $C \subseteq \text{Im } \psi$. Similarly, $D \subseteq \text{Im } \psi$ provided $n \in \text{Im } \psi$; but (q, p) = 1 so there exist $u, v \in Z^{+}$ with qu + pv = 1. Thus

$$n = n^{qu+pv} = \psi(n)^v (n^{qd})^{ud^{-1}} = \psi(n)^v m^{cud^{-1}}.$$

Now $m, c \in \text{Im } \psi$, $m^{cu} \in N \cap \text{Im } \psi$ and therefore $(m^{cu})^{d^{-1}} \in \text{Im } \psi$. Thus also $D \subset \text{Im } \psi$ and ψ is an epimorphism. However, with $w = [n, cd^{-1}]^p n^{p-q}$ we find $w \in \text{Ker } \psi, w \neq 1$ as $n, n^d \in D - H$ while $c \in C - H$.

Proof of Theorem 8. Let us observe that, for A any polycyclic-by-finite group, there exists a sequence of integers $\{r_n\}_{n\in\mathbb{Z}^+}$ with

$$r_n|r_{n+1}, \quad \bigcap_{n\in\mathbb{Z}^+}A^{r_n}=1$$

whence also

$$\bigcap_{n\in\mathbb{Z}^+} A^{r_n s_n} = 1$$

for any sequence $\{s_n\}_{n\in\mathbb{Z}^+}$ of integers. This may be established directly or by an easy application of a result of Learner [5], where it is in fact shown that we may choose $r_n = k^n$ for some $k \in \mathbb{Z}^+$.

Let $P = \{A * B; H\} \in \sigma(A, B; \text{cyclic})$. Utilizing Theorem 1 as usual, we may assume that H is infinite: $H = gp\{x\}$. As A, B are polycyclic-by-finite, choose series

$$A = A_1 \triangleright A_2 \triangleright \cdots \triangleright A_k \triangleright 1, \quad B = B_1 \triangleright B_2 \triangleright \cdots \triangleright B_k \triangleright 1$$

with $A_i \triangleleft A$, $B_j \triangleleft B$ for $1 \le i \le K$, $1 \le j \le L$, whose factors are either finite or torsion-free \mathscr{A} . Choose i, j minimal for which

$$H\cap A_{i+1}=1=H\cap B_{i+1}.$$

Then $H \cap A_i \neq 1 \neq H \cap B_i$, or

$$H \cap A_i = gp\{x^r\}, \qquad H \cap B_j = gp\{x^s\}, \quad r, s > 0;$$

and A_i/A_{i+1} , B_j/B_{j+1} are infinite, hence torsion-free \mathscr{A} . Thus there exist maximal integers u, v with

$$x^{rs}A_{i+1} \in (A_i/A_{i+1})^u, \quad x^{rs}B_{i+1} \in (B_i/B_{i+1})^v,$$

that is,

$$H \cap A_i^u A_{i+1} = gp\{x^{rs}\} = H \cap B_j^v B_{j+1}.$$

Now $gp\{x^{rs}A_{i+1}\}$ is a direct factor of $(A_i/A_{i+1})^u$, so that

$$x^{rst}A_{i+1} \in (A_i/A_{i+1})^{u\rho}$$
 if and only if $\rho|t$.

As

$$(A_i/A_{i+1})^{u\rho} = (A_i^u A_{i+1})^{\rho} A_{i+1}/A_{i+1}$$

and the situation is symmetric, this means that

$$H \cap (A_i^u A_{i+1})^{\rho} A_{i+1} = gp\{x^{rs\rho}\} = H \cap (B_i^v B_{i+1})^{\rho} B_{i+1}$$

for every ρ in Z^+ . On account of $x^{rs} \in A_i^u A_{i+1} \cap B_i^v B_{i+1}$, in fact

$$H\cap (A_i^uA_{i+1})^\rho=gp\{x^{rs\rho}\}=H\cap (B_i^vB_{i+1})^\rho.$$

Since $A_i^u A_{i+1}$, $B_j^v B_{j+1}$ are polycyclic-by-finite, there exists a sequence $\{\rho_n\}_{n\in\mathbb{Z}^+}$ of positive integers, with $\rho_n|\rho_{n+1}$ for all n, such that

$$\bigcap_{n\in Z^+} (A_i^u A_{i+1})^{\rho_n} = 1 = \bigcap_{n\in Z^+} (B_j^v B_{j+1})^{\rho_n}.$$

Set

$$C_n = (A_i^u A_{i+1})^{\rho_n}, \qquad D_n = (B_i^v B_{i+1})^{\rho_n}.$$

Then $\{C_n\}_{n\in\mathbb{Z}^+}$, $\{D_n\}_{n\in\mathbb{Z}^+}$ form nested filtrations of A, B; the proof will be completed by showing that these satisfy the hypotheses of Proposition 2. The nontrivial part is to check that, e.g.,

$$\bigcap_{n} C_n H = H.$$

From above, $H \cap C_n A_{i+1} = gp\{x^{rs\rho_n}\} = H \cap C_n$. Since $HA_i^u A_{i+1}/A_i^u A_{i+1}$ is finite, there exists to each g in $\bigcap_{n \in \mathbb{Z}^+} C_n H$ an element h in H such that

$$hg \in \bigcap_{n \in \mathbb{Z}^+} C_n(H \cap A_i^u A_{i+1}).$$

As in a step of the proof of Theorem 7, it can be deduced that

$$\bigcap_{n \in \mathbb{Z}^+} C_n(H \cap A_i^u A_{i+1}) A_{i+1} / A_{i+1} = (H \cap A_i^u A_{i+1}) A_{i+1} / A_{i+1},$$

that is,

$$\bigcap_{n\in\mathbb{Z}^+} C_n(H\cap A_i^u A_{i+1}) A_{i+1} = (H\cap A_i^u A_{i+1}) A_{i+1};$$

thus $hg \in (H \cap A_i^u A_{i+1}) A_{i+1}$. This proves that $\bigcap_{n \in \mathbb{Z}^+} C_n H \leq H A_{i+1}$. Obviously, $H \leq \bigcap_{n \in \mathbb{Z}^+} C_n H$; it remains to establish that $\bigcap_{n \in \mathbb{Z}^+} C_n H \cap A_{i+1} = 1$. This certainly holds if, for all n in \mathbb{Z}^+ , $C_n H \cap A_{i+1} \leq C_n$. In fact, more is true; namely, $C_n H \cap C_n A_{i+1} \leq C_n$. The converse inclusion being obvious, this last statement follows from the fact that the indices of $C_n H \cap C_n A_{i+1}$ and C_n in $C_n H$ are equal and finite. Indeed, as $H \cap C_n = H \cap C_n A_{i+1} = gp\{x^{rso_n}\}$,

$$C_n H/C_n H \cap C_n A_{i+1} \cong C_n HA_{i+1}/C_n A_{i+1} \cong H/H \cap C_n A_{i+1}$$
$$= H/H \cap C_n \cong C_n H/C_n$$

shows that each index is $rs\rho_n$. This completes the proof of Theorem 8.

BIBLIOGRAPHY

- 1. G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209.
- 2. G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201.
- 3. K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. 7 (1957), 29-62.
- 4. G. Higman, A finitely related group with an isomorphic proper factor group, J. London Math. Soc. 26 (1951), 59-61.
 - 5. A. Learner, Residual properties of polycyclic groups, Illinois J. Math. 8 (1964), 536-542.
- 6. B. H. Neumann, An essay on free products of groups with amalgamations, Trans. Roy. Philos. Soc. London Ser. A 246 (1954), 503-554.
- 7. H. Neumann, Generalized free products with amalgamated subgroups. II, Amer. J. Math. 71 (1949), 491-540.

COLUMBIA UNIVERSITY,
NEW YORK, NEW YORK